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Generalized M-Matrices and Applications 

By George D. Poole 

Abstract. Recently, two distinct directions have been taken in an attempt 

to generalize the definition of an M-matrix. Even for nonsingular matrices, these 

two generalizations are not equivalent. The role of these and other classes of recently 

defined matrices is indicated showing their usefulness in various applications. 

1. Introduction. All matrices considered are real. A square matrix A = (ai) is 
called an M-matrix if a,, < 0 whenever i # j and A- 1 > 0. A is called monotone if 
x > 0 whenever Ax > 0. The usefulness of these matrices has been indicated in [2], 
[18] and [27]. 

Recently, two distinct directions have been taken in an attempt to generalize the 
definition of an M-matrix. Schneider [24] was responsible for the first direction and in 
addition to requiring the square matrix A = (a,,) satisfy ai1 < 0 whenever i # j, he used 
the spectral properties of a nonsingular M-matrix to generalize to the singular M-matrix. 
The second direction is attributed to Plemmons [18] where he used the concept of 
monotonicity and the theory of generalized inverses to extend the definition of an 
M-matrix to include rectangular matrices. Even for nonsingular matrices these two 
generalizations are not equivalent. 

The purpose of this paper is to compare these new definitions of an M-matrix 
together with the concept of monotonicity and to indicate their role in various appli- 
cations. 

2. History and Preliminaries. A = (ai) is called a Stieltjes matrix if ai1 < 0 
whenever i # j and A is a symmetric positive definite matrix. In 1887, Stieltjes [25] 
showed that such a matrix satisfied A-1 > 0. In 1912, Frobenius [9] proved the 
following stronger result: If A = aI - B where B > 0 and a exceeds the spectral radius 
of B, then A- 1 > 0. In 1937, Ostrowski [16] generalized even further and his results 
together with those of several others are provided in the following definition. 

Definition 2.1. Suppose A = (a,,) satisfies a,, < 0 whenever i 0 i and aii > 0 for 
each i. The square matrix A is called an M-matrix if it satisfies any one of the following 
equivalent conditions [23]: 

(a) A = aI - B for some nonnegative matrix B and some a > p, where p is the 
spectral radius of B. 

(b) The real part of each eigenvalue of A is positive. 
(c) All principal minors of A are positive. 
(d) A- 1 exists and A- 1 > 0. 
(e) There exists a vector x > 0 such that Ax > 0. 
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For additional information on M-matrices see [231. We now consider several 

definitions which, due to properties (a), (d) and (e), are in some sense generalizations of 

an M-matrix. To place our later remarks in proper perspective, we have assumed that the 

classical definition of an M-matrix as given in Definition 2.1 is the only permissible one 

and that any generalization when restricted to the nonsingular case should agree with 

Definition 2.1. 

Definition 2.2. Suppose A = (ai1) satisfies ail S 0 whenever i = j and aii > 0 

for each i. The square matrix A is called an M-matrix if it satisfies any one of the 
following equivalent conditions [231: 

(a) A = aI - B for some nonnegative matrix B and some ai > p, where p is the 

spectral radius of B. 
(b) The real part of each nonzero eigenvalue of A is positive. 

(c) All principal minors of A are nonnegative. 
Definition 2.3. A square matrix A is called monotone if it satisfies any one of the 

following equivalent conditions [7]: 

(a) Ax > O implies x > O. 
(b) A-1 exists and A-1 > 0. 
Actually, Mangasarian [10] has generalized monotonicity to include all matrices 

satsifying condition (a). However, we take Collatz's [7] definition as given above. 

Definition 2.4. A rectangular matrix A = (ai) is called row monotone if it satis- 

fies any one of the following equivalent conditions, [11 and [181: 
(a) x E R(AT) and Ax > 0 implies x > 0. (R(A), AT denotes the range and 

transpose of A, respectively.) 
(b) AX > 0 implies AA+X > 0. (A+ denotes the Moore-Penrose inverse of 

A [17]-) 
(c) The system Y > 0, YA = A +A is consistent. 

(d) A+ - B + C for some B > 0 and C such that CA = 0. 

Definition 2.5. A matrix A is called semimonotone if A+ > 0. 

We might remark that the problem of finding conditions for which a matrix A 

has a nonnegative generalized inverse Ag (where Ag may be a group inverse or one 

satisfying any one of a number of combinations of the four Penrose equations) has been 

researched in detail. A general report and appropriate references are contained in [3]. 
Definition 2.6. Suppose A has order (m, n) and can be expressed in the form 

A = aB - M where M =BG > 0, B has rank n, and B+ > 0. Then A is called a rec- 

tangular M-matrix if A satisfies any one of the following equivalent conditions [18]: 

(a) ai > p where p is the spectral radius of G (G = B+M > 0). 

(b) A + > 0. 
Note that A has full column rank. 

Definition 2.2 is due to Schneider (see [23] and [24]). Definition 2.4 is due to 

Berman and Plemmons [1 ], and Definition 2.6 is due to Plemmons [1 8] . It is primarily 
Definitions 2.2 and 2.6 we are interested in comparing. However, the relationships be- 

tween all six of the definitions given above will be indicated giving a better perspective 
of the entire situation. To accomplish this, let M, M-, MO, Mr, M+, M+ denote the 

classes of matrices defined in Definitions 2.1-2.6, respectively. 
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The following notation is adopted: 

AT The transpose 

R(A) The range 
N(A) The null space 
A-' 1 The inverse 
A+ The Moore-Penrose inverse 
p(A) The spectral radius 
A > 0 The entries of A are nonnegative 
0 The zero matrix 
I The identity matrix 
C Subset 
C Proper subset 
(m, n) Indicates the size (order) of a matrix 

3. Relationships between M, M , MO, Mr M , M+ 
LEMMA 3.1. M C Mo C Mr. 
Proof. M C MO C Mr follows from Definitions 2.1, 2.3 and 2.4. To show that 

M 0 MO, consider 

A = [ 1 1] where A =[ ] 

A GMO butA A M. To show that Mo = Mr, consider A = [1, 1]. A E Mr but 
A IL Mo. 

LEMMA 3.2. M+ C M+ C Mr. 
Proof. M+ C M+ C M_ follows from Definitions 2.6, 2.5 and 2.4. The flrst 

matrix in the proof of Lemma 3.1 belongs to M+ and not to M+ so that M+ / M+ . 
To show M+ $ Mr, consider 

A = [ 1 1] where A+ =Y[ M 
4 

A G Mr but A 5- M+ . 
LEMMA 3.3. M C M+ and Mo C M+. 
Proof. The lemma follows from Definitions 2.1, 2.6, 2.3 and 2.5 and the fact 

that M+ and M+ contain nonsquare elements. 
LEMMA 3.4. M C M . Furthermore, when A E M- and A is nonsingular, then 

A G M [23]. 
In view of Lemma 3.4, Definition 2.2 would be considered an acceptable general- 

ization of an M-matrix. On the other hand, this same property does not hold for 
Definition 2.6. That is, even though M C M+ (Lemma 3.3), M+ contains nonsingular 
matrices which do not belong to M. For example, consider the first matrix A in the 
proof of Lemma 3.1. Let G = O, B = A, oa = 1. Then A = aB-0 where M = BG > 

0, B- 1 > 0 and a > p(G). According to Definition 2.6, A EM+ . However, A gt M. Even 
though Definition 2.6 is not the kind of generalization one normally works toward, this 
generalization specifies a class of matrices which are of considerable importance in iter- 
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ation schemes, as will be indicated in Section 4. 
We might also note from the definitions that nonsingular row monotone matrices 

are also monotone. 
LEMMA 3.5. There is no.set inclusion between M- and MO, M- and Mr, M- 

and M+, M- and M+. 
Proof. Consider the matrix 

I-1 I1 

where 2 = p(B) and 

A+- Y4 -14 
L 14 1/4J 

Then A E M-, A 9 MO, A 9 M+ and A M+. 
Also the matrix 

0 01 
A = 

-1 0l 

belongs to M- and not to Mr. We have established that M- ? MO, M- ? Mr M- 
M+ and M- ? M+. 

Now the first matrix in Lemma 3.1 belongs to MO, M+ and M+ but not to M-. 
The matrix 

A =1? 

belongs to Mr and not to M-. This shows that MO ? M-, M+ ? M-, M+ ? M- 
and Mr ? M- which establishes the lemma. 

These five lemmas verify the following theorem indicating the relationship among 
those matrices defined in Definitions 2.1-2.6. 

THEOREM 3.6. The following diagram indicates the relationship among the classes 
M, M-, MoM Mr, M+ and M+: 

U 

M C Mo C Mr 
n n 11 
MC M+ C Mr 

4. Convergent Splittings. The classes of matrices we have considered arise in in- 
vestigations concerning the convergence of iteration processes in matrix computation. 

For example, consider the matrix equation 

(4.1) Ax = b 

where A has order (m, n). When m = n and A is nonsingular, many iteration techniques 
[27] for solving (4.1) can be obtained by splitting A into the idifference of two matrices 
M and N and using the iteration 
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(4.2) X+1 =M-1Nx1+M -b. 

This iteration converges for each xo if and only if p(M- 1N) < 1. Conditions on A, M, 
N to insure that p(M- 1N) < 1 were given by Varga [271 (A- 1, M- 1, N > 0) and 
Mangasarian [1 1 ] (A- 1N, M- 'N > 0). 

If A E M, then by setting certain off diagonal elements of A equal to zero and 

defining the resulting matrix as M so that M-1 > 0 [27 Theorem 3.12], then N = M 
- A and the conditions of Varga are satisfied [27, Theorem 3.141. Also, this method 
yields a nontrivial splitting (N * 0) whenever A is not diagonal. 

If A is the first matrix in Lemma 3.1, then 

A =M - N= r -r1 
1 ? L? 1 

where A f M (A E Mo) and M- 1 > 0. Therefore A-1N > O, M- 1N > 0 and the 
conditions of Mangasarian are satisfied. Is there always a nontrivial splitting for ele- 
ments of Mo which satisfy the conditions of Mangasarian? 

Generalizing these techniques, Berman and Plemmons ([1], [2] and [19]) have 
shown how to solve (4.1) using iterative techniques similar to (4.2) when A E M+, for 
example. To illustrate the general flavor of these techniques, we present the following 
theorem and proof. 

THEOREM 4.3 (PLEMMONS). Suppose that A = M - N is a splitting for A and 
p(M+N) < 1, R(M+) C R(A T), R(N) C R(M) and MM+ = AA+, then the iteration 

(4.4) xi+1 = M+Nx + M+b 

converges to the best least-squares approximate solution A +b of (4.1), for any xo. 
Proof. Since p(M+N) < 1, the iteration (4.4) converges to some vector y. Then 

y = M+Ny + M+b E R(M+) C R(AT) 

and (I - M+N)y = M+b. Since R(N) C R(M), (MM+ is a projection on R(M)), 
MM+N=N. Hence, Ay = (M - N)y = (M - MM+N)y = M(I - M+N)y = MM+b. 

Also, MM+ = AA+ so that Ay = AA+b. Since y E R(AT), (A+A is a projection on 

R(AT)),y = A+Ay = A+AA+B = A+b, Which completes the proof. 
Plemmons has developed this technique in several papers (see [21, [18], [191, 

[20] and [21]) with slight variations and modifications depending on initial conditions 
of the given system Ax = b, such as consistency (underdetermined) or inconsistency 
(overdetermined), etc. 

The interesting problem at this point is to recognize matrices A which possess 
nontrivial splittings A = M - N satisfying the conditions in the hypothesis of Theorem 
4.3. 

One approach to this problem is to consider various well-defined classes of ma- 
trices and determine if they meet the conditions of Theorem 4.3. For example, the 
classes M, MO and M+ satisfy these conditions as demonstrated below [181 . 

THEOREM 4.5 (PLEMMONS). Suppose A has full column rank. Then A+ > 0 if 
and only if there exists a matrix N such that 
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(a) M = A + N satisfies R(N) C R(M) and M+ > 0, 

(b) M+N > 0, 

(c) p(M+N) < . 
A second approach is to generalize existing definitions so as to enlarge the class 

of matrices to which Theorem 4.3 may be applied. This appears to have been Plemmons' 

purpose in defining the class M+ , although it does not generalize the definition of a 
nonsingular M-matrix. Another class of matrices is defined as follows and is implicitly 

due to Plemmons [19]. 
Definition 4.6. A is a P-matrix if there exists a splitting A = M - N such that 

(a) R(M) = R(A), 
(b) N(M) =N(A), 

(c) A +N, M+N > . 

Plemmons showed in [191 that necessarily p(M+N) < 1. Theorem 4.3 applies 

to such matrices. Furthermore, if Mp denotes this new class of matrices, Mp contains 

matrices not included in Mo or M+ . For example, consider 

I 0 -1 01 O 
A = 0 = 0 OO =M - N, 

where 

A+ 
1/2 

1/2> AEMP A+=[ OJ >0, AEMp,, 

but A f Mo and A f M+. 
In summary, the best least-squares solution to Ax = b can be obtained through 

iteration techniques of the form (4.4), whenever A is a member of Mo0 M+ or Mp. 

5. Nonnegative Solutions to Matrix Equations. Monotone matrices A quite often 

appear in matrix equations of the form Ax = b when deriving finite difference approxi- 
mations to solutions of certain elliptic differential equations (see the bibliography in 

[27]). Until [11, only matrices A E MO were considered. Even though it is conceivable 

that singular matrices A in M- might appear in Ax = b, the iteration technique in (4.4) 
does not apply in general. However, such matrices do appear in other situations and 

play a valuable role. 
Rather than seek an iterative scheme to solve the equation Ax = b, one might 

be more interested in the problem of finding a nonnegative solution x when b > 0 

(or even for arbitrary b). Such problems arise in the study of periodic solutions of 

linear elliptic partial differential equations which are not symmetric [261. The study 

of nonnegative solutions is also important in statistics and linear programming problems 

(see [81, [141, [151). 
From our observations in the preceding sections, it is clear that the matrix equa- 

tion Ax = b and the matrix inequality Ax > b (when b > 0) has nonnegative best 

least-squares approximate solutions whenever A E M+. Furthermore, if b = 0 and 
4 E Mr, then all solutions of Ax 0 or Ax > 0 are nonnegative. Question: If b 0 0, 

b > 0 and A E Mr, when will Ax = b or Ax > b have nonnegative solutions? 
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As we have indicated, elements of M- need not belong to M+. However, Carlsor 
[5] provided necessary and sufficient conditions for the system Ax = b (b > 0), wher 
A E M-, to have a unique nonnegative solution. Rather than state his result which re- 
quires additional definitions and notation, we refer the reader to [5]. However, we 
note that these conditions of Carlson depend primarily on the location of zeros and 
nonzero elements (not their values) in A and b. 

We close this section with an example indicating the usefulness of the class M- 
and the results of Carlson where the material in Section 4 does not apply. 

Consider the matrix 

I 0 O-, 1/2 - Y2 O- 

A= -1 0 0 whereA+= 1/2 1/ 0] 
_ 0 1_ _ ? 1 

If b = [1, 1, 1] T, it is not immediately clear that the equation Ax = b has a non- 
negative solution since A+ is nonnegative. However, A+b > 0 is the desired solution. 

We remind the reader again of our remark immediately following Definition 2.5. 
X-monotone matrices are defined in [3], and such matrices could prove valuable when 
seeking nonnegative solutions to the system Ax = b depending on initial conditions. 
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